New research details an intriguing new way to solve "unsolvable" algebra problems that go beyond the fourth degree – something that has generally been deemed impossible using traditional methods for ...
A UNSW Sydney mathematician has discovered a new method to tackle algebra's oldest challenge—solving higher polynomial equations. Polynomials are equations involving a variable raised to powers, such ...
For centuries, one of algebra’s oldest puzzles has remained unsolved—how to find exact answers for higher-degree polynomials, where the variable is raised to the fifth power or more. Mathematicians ...
This is a preview. Log in through your library . Abstract In this paper, Bernstein polynomials method (BPM) and their operational matrices are adopted to obtain approximate analytical solutions of ...
The field of polynomial systems occupies a central role in computational mathematics, where the intricate interplay between algebra, geometry, and computational complexity is evident. Research in this ...
A UNSW Sydney mathematician has discovered a new method to tackle algebra’s oldest challenge – solving higher polynomial equations. Polynomials are equations involving a variable raised to powers, ...
A mathematician has built an algebraic solution to an equation that was once believed impossible to solve. The equations are fundamental to maths as well as science, where they have broad applications ...
Some results have been hidden because they may be inaccessible to you
Show inaccessible results